
Magnetic Resonance Spectrum Simulator (MARSS) User Manual 

 

Introduction 

MARSS1 is a software package designed to simulate the output time domain signal 

(free induction decay) for any arbitrary metabolite and pulse sequence. MARSS can be 

used to simulate basis sets for quantification, optimization studies or to test novel 

sequences. When using MARSS please reference the associated manuscript1 and 

if you have any questions please do not hesitate to contact me. The input required 

is a .mat file, and requires the mandatory inputs, but has additional options as well that 

are useful for some certain sequences. MARSS was written in MATLAB and compiled 

with the 2013b runtime environment. I cannot guarantee forwards or backwards 

compatibility, but if it does not work with your version please contact me and we will 

work to resolve it. 

We provide the MATLAB executable “MARSS.exe”, as well as the README 

which details how to ensure that the MATLAB executable can be run, and a 

sample .mat file of input (MARSSinput.mat). After you have filled out the parameters for 

the input file save the workspace as “MARSSinput.mat” and simply run the executable. 

Some output will be printed to the command prompt, or errors as appropriate. Some 

spin systems can take a very long amount of time (days), whereas some can be done in 

a few seconds or minutes. This relies upon whether the 1D projection method and the 

propagator method can be used for the particular pulse sequence, as explained in the 

manuscript. 

 MARSS will output three folders: 1) “IndividualSpins_for_yourfilename”, where 

“yourfilename” is what is input in the MARSSinput.mat. Inside this folder will be a .mat 

for each specified metabolite, and within each .mat is a struct called exptDat. Exptdat 

has the fields sf (center frequency in MHz), sw_h (receive frequency in Hz), nspecC 

(number of acquired points) and fid (the simulated FID). The size of fid will be nspecC 

by Nspins, where Nspins is the number of spins for this metabolite (for example 6 for 

GABA). This format could be useful because in principle each moiety can have different 

T1 or T2 values, and individual spins could thus be scaled accordingly. The second 

folder MARSS outputs is 2) “SummedSpins_for_yourfilename”. Within this folder 

contains a .mat file for each metabolite which are identical to 

“IndividualSpins_for_yourfilename”, except that the size of FID will be 1 by nspecC (i.e., 

all spins for a metabolite are added together). This is what is read in by INSPECTOR to 

make a basis set. The last folder output is “RawBasis_for_yourfilename”. Within each 

one of these is a .raw file which can be used by LCModel to generate a basis set. In 

addition to this MARSS outputs a single file called “generatedSignals.mat”. Inside 

this .mat there is a single call array called “signal”, which is a cell that contains all the 

matrices for all the specified metabolites. For example, if you have 4 metabolites signal 



will be a cell array of length 4, where each index contains the FID for each specified 

metabolite. Note that all data output is in the time domain, thus to display spectra the 

Fourier transform must be used.  

 A quick tip to understanding MARSS is that crusher gradients (i.e., those 

gradients played in-between RF pulses) and slice-selective gradients are handled 

differently. Crushers, for the basic user, can simply be ignored and the problem of 

unwanted coherence pathways is handled through a filter. Slice-selective gradients, 

however, cannot. Also the rephasing lobes associated with slice-selective gradients 

must also be input. 

 

Mandatory inputs in the input .mat file:  

1) The physical RF pulse, input as a cell of N RF pulses called “rfPulses”. The amplitude 

unit of the RF pulses must all be the same, and can either be ‘Gauss’, ‘Hz’ or radians 

(‘rad’). To specify which amplitude type the variable “amplitudeUnit” must be the 

corresponding string. For example, if your RF pulses have a physical amplitude of Hz 

then write  

>>amplitudeUnit = ‘Hz’. 

For example, for a 3-pulse experiment where the three RF pulses are variables of name 

individualRFPulse1, individualRFPulse2 and individualRFPulse3, respectively, one 

would write: 

>>rfPulses{1} = individualRFPulse1; 

>>rfPulses{2} = individualRFPulse2; 

>>rfPulses{3} = individualRFPulse3; 

And individualRFPulse1/2/3 can either be a matrix of size (number of points by 1) or 

(number of points by 2), where the second column corresponds to the phase of the RF 

pulse if the pulses have phase (must be input in units of radians).  

2) Durations of the RF pulses, input as a vector of size N in seconds. For example, if 

you had a 3-pulse experiment where the first pulse is 1 ms in duration and the second 

duration is 2 ms and the third duration is 3 ms you would write 

 >>durations(1) = 1E-3; 

 >>durations(2) = 2E-3; 

 >>durations(3) = 3E-3; 

3) Delays between RF pulses, input as a vector of size N in seconds. The first value is 

the delay (i.e., dead time) between the end of the 1st RF pulse and the beginning of the 

2nd  RF pulse, the second value is between the 2nd and 3rd rf pulse, and the Nth entry is 

between the Nth RF pulse and the start of acquisition. Note this is not the time from 



the peak of one RF pulse to the next, it is the time from the end of one pulse to 

the beginning of the next. For example, if two pulses were played back-to-back the 

delay corresponding to value would be zero, regardless of the duration of the pulses. If 

you had a three-pulse experiment where the delays between the 1st and 2nd pulse is 1 

ms, the delay between the 2nd and 3rd RF pulse is 2 ms and the delay between the 3rd 

RF pulse and the start of acquisition is 3 ms you would write 

 >>delays(1) = 1E-3; 

 >>delays(2) = 2E-3; 

 >>delays(3) = 3E-3; 

4) The slice-select gradients which is a matrix of size N x 3, input in units of mT/m. For 

example, if you had a 3-pulse experiment and the slice-select gradient amplitudes were 

1 mT/m, 2 mT/m, and 3 mT/m, and played out in the x, y and z axes, respectively then 

you would write: 

 >>G = zeros(3,3); 

 >>G(1,1) = 1; 

 >>G(2,2) = 2; 

 >>G(3,3) = 3; 

Note that the notation used for all axes is column 1 corresponds to x, column 2 

corresponds to y and column 3 corresponds to z.  

5) The rephasing areas / crusher gradients, input in units of mTs/m which is a matrix of 
size N x 3. If you do not input the crusher gradients because you are using the 
coherence pathway filter (recommended, see optional inputs) then you still must put in 
the rephasing lobes (typically one just one following the slice-select RF pulses for spin-
echo based sequences like PRESS, sLASER, LASER, etc, and 3 for STEAM). If you 
have a self-refocusing pulse then and do not want to simulate crushers then this matrix 
would need to set to be all zeros. For the most common example where you have a 
single rephasing lobe directly after the slice-selective RF pulse (i.e., PRESS, sLASER, 
LASER and SPECIAL) and the rephasing crusher is of area 0.002 mTs/m (determined 
by the specifics of the excitation pulse and slice-selective gradient) in the x direction 
directly after the first pulse in a 3-pulse experiment you would input this as: 
 
 >>rephaseAreas = zeros(N,3); 
 >>rephaseAreas(1,1) = 0.002; 
 
If you also use rephaseAreas for crusher gradients remember that the phase accrued 
during these periods is linearly proportional to the time-integral of the gradient 
waveform. Thus if you have two crushers that play out in a single period, simply add 
their areas (mTs/m) together, then input this value into rephaseAreas. Similarly, if you 
have a rephasing lobe and a crusher (which exists, for example, directly after the 1st RF 



pulse for PRESS) simply add the rephasing lobe area to the crusher lobe area. To 
calculate the rephasing area, 𝑅𝑎 for an excitation pulse the following equation can be 
used: 
 

𝑅𝑎 = 𝜏𝑖𝑠𝑜𝐺, 
 
where 𝜏𝑖𝑠𝑜 is the “iso-delay” time, in seconds, which is the time from when the 
magnetization has effectively tipped into the transverse plane until the end of the pulse 
(equal to ½  the duration of the RF pulse for symmetric pulses, whereas for min-phase 
pulses it is a value smaller than half the duration of the RF pulse) and G is the slice-
select gradient amplitude, in mT/m.  
 
6) Field strength (in Tesla), for example if you wanted to simulate for 3 Tesla you would 
write 
 
 >>B0 = 3; 
 
7) Metabolites input as a cell. Most chemical shift and J-coupling constants are obtained 
from Govindaraju et al.2, with GABA taken from Near et al.3 and 2HG from Choi et al.4 
The following metabolites can be specified: 
 

Name of metabolite MARSS metabolite string 

Acetate Ace 

Ascorbate Asc 

Aspartate Asp 

Alanine Ala 

N-Acetylaspartic Acid NAA 

N-Acetylaspartylglutamic Acid NAAG 

γ-aminobutyric acid  GABA 

Choline Ch 

Creatine Cr 

Ethanolamine 
 

Eth 

Glucose [0.36*GlcA + 0.64*GlcB 
(biological ratio of the two glucose 
anomers)] 

Glc 

α-glucose GlcA 

β-glucose GlcB 

Glutamate Glu 

Glutamine Gln 

Glutathione GSH 

Glycerol 
 

Glycerol 
 

Glycero-phosphocholine 
 

GPC 

Glycine Gly 



Homocarnosine Hom 

Myo-inositol mI 

Scyllo-inositol sI 

Lactate Lac 

Phenylanine PA 

Phosphocreatine PCr 

Phosphorylcholine PCh 

Phosphorylethanolamine PE 

Pyruvate Pyr 

Serine Ser 

Succinate Suc 

Taurine Tau 

Threonine Thr 

Tryptophan Try 

Tyrosine Tyr 

Valine Val 

Water Water 

2-Hydroxyglutarate 2HG 

 
Note that water always appears at the reference peak (i.e., a default of 4.65, but can be 

specified to other values, since the center frequency is tuned to water). You can see 

how the metabolite information (chemical shift, J-couplings, number of protons) are 

stored in the included matrix file “metabList.mat”. If you would like to add your own 

metabolite you can add it to this file – for more information contact me at 

kl2968@columbia.edu. 

The variable “metabolite” is a cell with an entry containing the MARSS Metabolite String 

for each metabolite that MARSS will simulate.  For example, if you wanted GABA, NAA 

and Cr in your outputted folder write: 

>>metabolites{1} = ‘GABA’; 

>>metabolites{2} = ‘NAA’; 

>>metabolites{3} = ‘Cr’; 

8) Spatial locations to be simulated over, which is input as a vector. Must have values 

for x, y and z in mm. For example, if you wanted to simulate over 40 mm (centered 

about 0) with 128 points in each dimension then you would write: 

>>x = linspace(-20, 20,128); 

>>y = linspace(-20, 20,128); 

>>z = linspace(-20, 20,128);  

If you are not interested in one dimension you could just set one of them equal to a 

constant value, but make sure that the value you specify is within your voxel. If you 



choose a value outside of your voxel you will still get spectra but it will have a very weird 

shape. If the amplitude of the spectra is very small (less than 1 at the peak) this is likely 

indicative of a problem. All 3 of x, y and z must be set. 

9) The coherence pathway filter is a way to filter the density matrix after each RF pulse 

as explained in the MARSS manuscript. For example, if you want to use it for PRESS 

then you would write: 

>> coherencePathway = [-1 1 -1]; 

Note that this input isn’t strictly necessary, but you do need to handle unwanted 

coherence pathways in some way for most sequences. The input coherencePathway is 

a convenient and fast way to remove unwanted coherence pathways. Alternatively 

phase cycling (see 2 below) or crusher gradients could be used. Crusher gradients 

would then have to be input in rephaseAreas. For information about which coherence 

pathway is selected for many common MRS sequences see Landheer et al.5  

10) The receiver bandwidth in Hertz that matches your experimental acquisition. For 

example if you wanted 5000 Hertz receiver bandwidth you would input 

 >> bw = 5000; 

11) The number of points in the FID. For example if you wanted 2048 points you would 

input: 

 >> Npoints = 2048; 

12) The output directory where the basis sets will be simulated. For example if you 

wanted it in ‘C:\Users\Karl’ you would input: 

 >>outputDirectory = ‘C:\Users\Karl’; 

 

Optional inputs not necessary for all experiments 

1) referencePeak is the frequency (in ppm) water is placed at. This is because all 

metabolites are referenced to TMS in simulation (0 ppm), however the center frequency 

for scanners is 0 ppm = water, not TMS. So we shift all spectra by this value. Default is 

4.65 ppm (frequency of water at 37 oC). If you wanted it to be another value (say 4.75 

ppm for water at 20 oC), then you would write 

 >>referencePeak = 4.75;  

2) Phase cycling is a way to filter the density matrix to exclude unwanted coherence 

pathways. If you want to use phase cycling them simply have the variable phaseShifts 

in the .mat file. phaseShifts should be a matrix of size (N+1,Nc), where the first column 

corresponds to the phase shifts applied to the 1st RF pulse, the second column 

corresponding to the phase shifts applied to the 2nd RF pulse, etc, and the last column 

corresponds to the phase shift applied to the receiver. Nc is the number of phase step 

cycles and all phase shifts should be input in radians. For example if you wanted to use 



the following 8 step phase cycling scheme for PRESS you would write: 

 

>>phaseShifts = [0 0 0 0; 0 pi/2 0 pi; 0 pi 0 0; 0 3*pi/2 0 pi; pi 0 0 pi; pi pi/2 0 0; … 
   pi pi 0 pi; pi 3*pi/2 0 0]; 
 

3) rfOffsets are the offset frequencies of your N pulses, the default is all zeros. This is 

necessary for J-difference editing experiments, whereas for slice-selects it will just move 

the position of the voxel. Note that the units are in Hz from tetramethylsilane (0 ppm), 

not from water, so the value here is likely different than the value you put in the 

scanner. For example, if you wanted to edit GABA which places the editing pulse at 

1.89 ppm this would correspond to an offset of 1.89*B0*gyromagneticRatio, which for 

3T, is 241 Hz. If your second pulse was the editing pulse in a three-pulse experiment, 

and the other two had offsets of 0 Hz, you would write 

 >>rfOffsets(1) = 0; 

 >>rfOffsets(2) = 241; 

 >>rfOffsets(3) =0; 

4) autoMean (default is ‘true’). This variable does an automatic averaging over all 

spatial positions of the density matrix. If you write 

 >>autoMean = false; 

Then the resulting signals in generatedSignals.mat will be of size (length(x), length(y), 

length(z), numberOfSpins, numberOfPoints), which allows you to visualize the traces at 

different spatial locations. Do not use this for generating basis sets as both LCModel 

and INSPECTOR will be unable to read this. This is only for testing and visualization. 

Note that this greatly reduces computational efficiency so large numbers of points 

(203+) will take very long for large spin systems. Note that you may run out of memory 

when doing this for large spin systems and number of spatial points (just due to the 

maximum matrix size MATLAB can hold), in which case you could fix this by arraying 

over one (or more) spatial positions (i.e., hold one position constant and repeat the 

simulation numerous times incrementing that position), or do a single spatial dimension 

at a time. I use this to ensure that my rephasing lobes are of proper area by only 

arraying over a single spatial dimension at a time. 

5) If you have gradient waveforms (i.e., time varying gradients for GOIA pulses, for 

example) which are played out during the RF pulses then you can specify them using 

the variable G, but in this case it must be a cell, not a matrix. The cell must be of size N 

(number of RF pulses), with each element containing a matrix of NG x 3, where NG is the 

number of points in the gradient waveform, and the first column corresponds to the x 

values, the second column corresponds to the y values, and the third column 

corresponds to the z values. The values should be input in mT/m, and the durations of 

these gradient waveforms is equal to the duration of the RF pulses. If you have both 



time-varying and non time-varying gradient waveforms then an entry of G can be a 

vector. For example, if you have say time-varying gradient accompanying the first RF 

pulse for a three-pulse experiment (which, in this case, is a sinusoid along the x axis), 

but the second and third gradients are just 5 mT/m in the y axis and 10 mT/m in the z 

axis, respectively, then you would input 

>>G{1} = [10*sin(1:100)' zeros(100,1) zeros(100,1)]; 

>>G{2} = [0 5 0]; 

>>G{3} = [0 0 10]; 

The same rules regarding 1D projection method and the propagators applies with 

gradient waveforms, so once again for some sequences this may take a long time. Note 

that it is assumed these time-varying gradients are the same duration as the 

accompanying RF pulses.  

6) If you want to include relaxation directly into your simulated basis set (i.e., relaxation 

during delays and during RF pulses) then you must set the variable relaxationTimes, 

which is a matrix of size numberOfMetabolites x 2, where the two columns correspond 

to the T1 and T2 values of your metabolites, respectively. The order of the relaxation 

times must match the order of the metabolite cell. For example say you have NAA (T1 = 

1s, T2 = 100 ms) and Cr (T1 = 2s, T2 = 200 ms), then you would input the following: 

 >>metabolites{1} = ‘NAA’; 

 >>metabolites{2} = ‘Cr’; 

 >>relaxationTimes = [1 0.1; 2 0.2]; 

For most experiments simply scaling the basis set by exp(-TE/T2) is sufficient (as 

shown in the manuscript), but for some sequences it may important so I have included it 

(spin-locking experiments, CP experiments). Note that the 1D projection method and 

propagators cannot be used with relaxation, so MARSS will take a very long time for 

large number of spatial points (few hours to few days depending on which metabolite). 

Note that when relaxation is specified there is no relaxation applied during the FID – 

only during the period prior to acquisition. Note that this will only scale it by relaxation 

during the pulse sequence, so for steady-state correction effects (i.e., incomplete 

relaxation between TRs) this must still be scaled accordingly for absolute quantification. 

Tips & Notes 

There are 6 MARSS templates provided in the folder: PRESSGETE30ms.mat, 

PRESSPhilipsTE30ms.mat, PRESSSiemensTE30ms.mat, 

STEAMGETE20msTM10ms.mat, STEAMPhilipsTE20msTM16ms.mat, 

STEAMSiemensTE20msTM10ms.mat, corresponding to PRESS and STEAM for three 

vendors (GE, Siemens and Philips). The TE and TM are given in the name of the file, if 

you want a different TE or TM you can go into the files and change the variable “delays” 

to meet your experimental details. If you need help doing this, please contact me. These 



are also useful as templates because they have all variables that must be input. If you 

want to run MARSS with one of these templates just simply copy the file and rename it to 

“MARSSinput.mat” and run MARSS.exe.    

For J-difference editing just experiments simulate two basis sets (one with the 

editing pulse on, one with the editing pulse off) and then write a MATLAB script that 

cycles through the outputted metabolites and subtracts them from one another. If you 

need help with this, please contact me. 

All outputted spectra are linebroadened by a 1 Hz exponential filter. This means 

when you fit your spectra to the basis set and you need to linebroaden it by, say, 5 Hz, 

then the actual linewidth of your spectra is 5 + 1 (6) Hz.  

 

Notes for LCModel users 

 

Ensure that NOSHIF is true, i.e., add the following to all $NMEACH sections.” 

NOSHIF=T. 
 

For any questions, bugs, critiques or suggestions please email me at 

kl2968@columbia.edu.  
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